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Spectral properties of coupled cavity arrays in one dimension are investigated by means of the variational
cluster approach. Coupled cavity arrays consist of two distinct “particles,” namely, photons and atomiclike
excitations. Spectral functions are evaluated and discussed for both particle types. In addition, densities of
states, momentum distributions and spatial correlation functions are presented. Based on this information,
polariton “quasiparticles” are introduced as appropriate, wave vector and filling dependent linear combinations
of photon and atomiclike particles. Spectral functions and densities of states are evaluated for the polariton
quasiparticles, and the weights of their components are analyzed.
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I. INTRODUCTION

The experimental progress in controlling quantum optical
and atomic systems, which has been achieved over the last
few years, prompted ideas for new realizations of strongly-
correlated many body systems, such as ultracold gases of
atoms trapped in optical lattices1–3 or light-matter
systems.4–6 The latter consist of photons, which interact with
atoms or atomiclike structures. Normally, the interaction be-
tween photons and atoms is very weak, since the interaction
time is small. However, a strong interaction can be achieved
when photons are confined within optical cavities. In this
case, the coupling between photons and atoms leads to an
effective repulsion between photons, which means that it
costs energy to add additional photons to the cavity. The
arrangement of such cavities on a lattice, see Fig. 1, allows
the photons to “hop” between neighboring sites, provided the
cavities are coupled. Quantum mechanically the coupling of
adjacent cavities means that their photonic wave functions
overlap. Due to the strong interaction between photons and
atoms, and the introduction of a lattice of coupled cavities, a
strongly correlated phase emerges where photons are present.
The light-matter models share some basic properties with the
Bose-Hubbard �BH� model,7 such as the quantum phase tran-
sition from a Mott phase, where particles are localized on the
lattice sites, to a superfluid phase, where particles are delo-
calized on the whole lattice.4 Yet the physics of the light-
matter models is far richer because two distinct particles,
namely, photons and atomiclike excitations, are present.

A major advantage of these man-made realizations of
strongly correlated many-body systems is that they can be
tailored to correspond to a many-body model, whose param-
eters can be directly controlled in the experiment. Further-
more local quantities, such as the particle density at a spe-
cific lattice site, can be addressed individually due to the
mesoscopic scale of the cavities and both lattice size and
geometry can be controlled in the fabrication process. An
experimental realization of these light-matter systems is still
missing but there are several promising approaches, such as
photonic crystal cavities or toroidal and disk-shaped
cavities.6 If light-matter systems can be realized, they will
undoubtedly provide fascinating insight in the physics of
strongly correlated many-body systems. The realizations

might be used as quantum simulators for other quantum me-
chanical problems or even more intriguing for quantum in-
formation processing applications.8

Recently, there has been a lot of research activity in the
field of light-matter systems. Most of the work has been
devoted to investigate the quantum phase transition from the
Mott to the superfluid phase. Some basic characteristics of
the quantum phase transition have been evaluated from small
systems of a few cavities by means of exact
diagonalization.5,9–12 Results are available at mean-field
level4,13–15 as well or more accurately from analytical strong
coupling perturbation theory calculations,16 and from simu-
lations based on the density matrix renormalization group
�DMRG�,17,18 the variational cluster approach19 and quantum
Monte Carlo �QMC�.20 Spectral properties of light-matter
systems have been investigated in Refs. 16, 19, and 21.

In the present paper, we study in detail the spectral prop-
erties of a one-dimensional light-matter system. In particular,
we evaluate both photonic as well as atomic-excitation spec-
tral functions. The investigation of both spectral functions
allows us to characterize the polariton excitations in light-
matter models. In addition to the spectral functions, we
present densities of states, momentum distributions and spa-
tial correlation functions. For completeness we also show the
first two lobes delimiting the Mott transition.

This paper is organized as follows: in Sec. II, we intro-
duce the light-matter model. Section III contains both the
description of the numerical method as well as the explora-
tion of the polaritonic properties. Section IV is devoted to
spectral properties of the light-matter system. Here, we
present our results for spectral functions, densities of states,
momentum distributions and spatial correlation functions. Fi-
nally, we summarize and conclude our findings in Sec. V.

II. MODEL

From the great variety of possible theoretical descriptions
of light-matter systems4–6,17,22,23 we concentrate on the sim-
plest one, which consists of an array of cavities each of
which contains a two-level system.4 The physics of the i-th
cavity can be described by the Jaynes-Cummings �JC�
Hamiltonian,24 which for �=1 is given by
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Ĥi
JC = �cai

†ai + ��i
+�i

− + g�ai�i
+ + ai

†�i
−� , �1�

where �c is the resonance frequency of the cavity, i.e., the
frequency of the confined photons, � is the energy spacing of
the two-level system, and g is the atom-field coupling con-
stant. The operator ai

† creates a photon with frequency �c,
whereas ai annihilates one. The two-level system can be
mathematically described by Pauli spin algebra. Thus, we
identify the ground state of the two-level system with �↓i�
and the excited state with �↑i�. With that the atomic raising
operator is defined as �i

+��↑i��↓i� and the atomic lowering
operator as �i

−��↓i��↑i�, respectively. In order to obtain the
JC Hamiltonian the rotating wave approximation, which is
justified for ��c−����c ,�,25 has been assumed. The devia-
tion between the resonance frequency and the energy spacing
of the two-level system, ���c−�, is termed detuning. For
the JC Hamiltonian the particle number n̂i=ai

†ai+�i
+�i

− is a

conserved quantity, as �Ĥi
JC , n̂i�=0. This is a consequence of

the rotating wave approximation.25

The full model consists of an array of N cavities, which
form a lattice and hence we refer to this model as the Jaynes-
Cummings lattice �JCL� model. Due to the coupling of the
cavities, photons are allowed to hop between neighboring
lattice sites. This leads to the JCL Hamiltonian

ĤJCL = − t	
�i,j�

ai
†aj + 	

i

Ĥi
JC − 	N̂p, �2�

where t is the hopping strength and 	 the chemical potential,

which controls the total particle number N̂p of the system.
The first sum with the angle brackets around the summation
indices is restricted to nearest-neighbor sites. In the case of
the JCL model, the particle number of a specific cavity n̂i is
not conserved anymore. However, the total particle number

N̂p=	in̂i is a conserved quantity. In summary, the JCL
Hamiltonian can be rewritten as

ĤJCL = − t	
�i,j�

ai
†aj − �	

i

�i
+�i

−

+ g	
i

�ai�i
+ + ai

†�i
−� − �	 − �c�N̂p. �3�

From Eq. �3� and from the fact that we consider the coupling
strength g as unit of energy, it follows that the physics only
depends on three independent parameters, namely the hop-
ping strength t, the detuning � and the modified chemical
potential 	−�c. In order to fulfill the condition for the rotat-
ing wave approximation the resonance frequency �c has to
be large in comparison with the detuning �, which can be
always satisfied theoretically as solely the difference be-

tween the chemical potential and the resonance frequency

appears in the grand-canonical Hamiltonian ĤJCL.

III. METHOD

In order to investigate the properties of the JCL model, we
use the variational cluster approach26 �VCA�, which has been
formulated for bosonic systems in Ref. 27. Previous work on
the JCL model within VCA was carried out in Ref. 19.

A. Variational cluster approach for bosons

The basic concept of VCA is that the grand potential 
 is
expressed as a functional of the self-energy � and that Dys-
on’s equation for the exact Green’s function G is recovered
at the stationary point of the self-energy functional 
���.28,29

In order to evaluate 
���, the self-energy � of the investi-
gated system is approximated by the self-energy of an ex-
actly solvable, so-called reference, system. In practice, this
means that the self-energy � becomes a function of the set x
of single-particle parameters of the reference system, i.e.,
�=��x�. For bosonic systems the approximated grand po-
tential reads27


�x� = 
��x� + Tr ln�− G��x�� + Tr ln
− �G0
−1 − ��x��� ,

�4�

where primed quantities correspond to the reference system
and G0 is the noninteracting Green’s function. The stationary
condition on 
�x� is given by

�
�x�
�x

= 0. �5�

This condition can be evaluated numerically by varying
some or all of the single-particle parameters. In order to
guarantee that a given physical quantity �such as the number
of particles� is thermodynamically consistent, it is necessary
that 
 is stationary with respect to the associated coupling
constant �here the chemical potential�.30 Therefore, varying
�c ensures that the total number of photons is thermody-
namically consistent. On the other hand, it would be advis-

able for a conserved quantity, i.e., N̂p to be consistent as
well. Otherwise uncommon situations could occur. For ex-

ample, as we show below, the total particle density N̂p /N,
evaluated as a trace of the Green’s functions is not integer in
the Mott phase. This effect becomes stronger close to the tip
of the Mott lobe, see Fig. 3�b�. The noninteger particle den-
sity, occurring when 	 is not taken as a variational param-
eter, clearly introduces an uncertainty in the determination of
the phase boundary.

In principle, however, there is a formal difficulty in taking
	 as a variational parameter. The problem is related to the
coupling of 	 with atomic excitations, which, in contrast to
photons, cannot be seen as noninteracting particles. This is,
in general, not allowed within VCA, whereby the reference
system can differ from the physical one by a single-particle
Hamiltonian only. The solution is readily overcome by ob-
serving that the two-level atomic system can be mapped onto
a hard-core boson model. In this way, 	 couples to the total

FIG. 1. �Color online� Cavities forming a one-dimensional chain
lattice. The blue dots represent atomic systems, whereas the red
wavy arrows indicate photons.
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number of “atomic” bosons plus photons, i.e., a noninteract-
ing Hamiltonian. The hard-core constraint simply becomes a
local �in principle infinite� interaction, which is common to
the reference and to the physical system.

The mapping of the two-level excitations onto hard-core
bosons is mathematically achieved by the following replace-
ments

�i
+ → bi

†, �i
− → bi,

�↓i� → �0i� and �↑i� → �1i� .

This is valid provided one excludes states with double occu-
pation of b particles even as intermediate states.31 With this
mapping the JCL Hamiltonian reads

ĤJCL = − t	
�i,j�

ai
†aj − �	

i

bi
†bi + g	

i

�aibi
† + ai

†bi�

− �	 − �c�N̂p + lim
U→�

U

2 	
i

bi
†bi�bi

†bi − 1� , �6�

where we have formally implemented the hard-core con-
straint by introducing an infinite interaction for b particles. In
the restricted Hilbert space of zero or one hard-core boson
per lattice site, the matrix elements of the two representa-
tions are identical. In principle, states with higher occupation
number bi

†bi�1 have to be considered in the bosonic version
as well. However, the occupation of such states would cost
infinite energy and, therefore, they do not influence the en-
ergies obtained from the Hilbert space sector with occupation
numbers bi

†bi
1.31 We have checked this aspect numerically
for very large U. It can also be verified easily when the
sector of the Hilbert space with bi

†bi�1 is included pertur-
batively. These considerations can be straightforwardly ex-
tended to light-matter models with more than one atom or
atomic-like structure �with two relevant levels� per cavity. In
this case, one introduces a boson species for each atom and
the hard-core constraint is enforced for each boson species.

In our calculation we take both parameters �c and � of the
reference system as variational parameters �	 is just a linear
combination�, which ensures thermodynamic consistency for
the particle number of both species, and, consequently, of the
total particle number. We show below, that varying both pa-
rameters instead of just �c provides an improvement in the
accuracy of the phase boundaries for a given cluster size, see
Table I.

The present formulation of the VCA cannot address the
superfluid phase, and is, thus, restricted to the Mott
phase.19,27 Outside of the Mott lobes, peaks with negative
�positive� spectral weight appear in the positive �negative� �
region, signaling the instability toward the superfluid phase.
A treatment of the superfluid phase requires a Nambu
Green’s function treatment analogous to the fermionic case.
The boundary of the Mott phase could be, in principle, de-
termined by this criterion. However, it is simpler �and, of
course, equivalent� to identify it, for a given t, as the region
between the ground-state energies of the �Np+1� and �Np
−1�-particle states, which can be directly inferred from the
single-particle spectral function.

In VCA, the reference system is chosen to be a decompo-
sition of the total system into identical clusters, which means
that the total lattice of N sites is divided into clusters of size
L. Mathematically this can be described by introducing a
superlattice, such that the original lattice is recovered when a
cluster is attached to each lattice site of the superlattice. The
reference system defined on a cluster is solved by means of
the band Lanczos method.32,33 The initial vector of the itera-
tive band Lanczos method for the single-particle excitation
term of the cluster Green’s function contains 2L elements
and is given by


a1
†��0�, a2

†��0� . . . aL
†��0�, �1

+��0� . . . �L
+��0�� , �7�

where ��0� is the Np particle ground state. For the single-hole
excitation term the initial vector of the band Lanczos method
is obtained by replacing the creation operators in Eq. �7� by
annihilation operators.

To evaluate the grand potential and the single-particle
Green’s function of the original system we use the bosonic
Q-matrix formalism.34 This formalism yields the Green’s

function G�k̃ ,�� in a mixed representation, partly in real
space and partly in reciprocal space, see Appendix A. The

matrix G�k̃ ,�� is of size 2L�2L and k̃ belongs to the first
Brillouin zone of the superlattice. Due to the specific order of
the creation operators in the initial vector of the band Lanc-
zos method we are able to extract the Green’s function for

photons Gph�k̃ ,�� and the Green’s function for two-level

excitations Gex�k̃ ,�� from G�k̃ ,�� in the following way

Gr,s
ph�k̃,�� = Gr,s�k̃,��

and

Gr,s
ex �k̃,�� = Gr+L,s+L�k̃,�� ,

where r ,s� �1. . .L�. The application of the periodization
prescription proposed in Ref. 35 �Green’s function periodiza-
tion� yields the fully k dependent Green’s functions
Gph�k ,�� and Gex�k ,��. From that we are able to evaluate
the single-particle spectral function

Ax�k,�� � −
1

�
Im Gx�k,�� , �8�

the density of states

Nx��� � � Ax�k,��dk =
1

N
	
k

Ax�k,�� , �9�

and the momentum distribution

nx�k� � − �
−�

0

Ax�k,��d� , �10�

where x can be either ph for photons or ex for two-level
excitations. We use the Q-matrix formalism to evaluate the
momentum distribution, since this approach yields particu-
larly accurate results.34 Furthermore, we calculate the spatial
correlation functions

SPECTRAL PROPERTIES OF COUPLED CAVITY ARRAYS… PHYSICAL REVIEW B 81, 104303 �2010�

104303-3



Cij
ph � �ai

†aj� and Cij
ex � ��i

+� j
−� , �11�

which just depend on the distance between two cavities i and
j, i.e., Cij

x =Cx��ri−r j��. Notice that the poles of the hard-core
boson Green’s function coincide with the poles of the two-
level excitation Green’s function as the energies of both rep-
resentations are identical. However, the hard-core boson
Green’s function exhibits additional poles located at energies
of the order U→�. The additional poles which have finite
weight result from the fact that excitations such as bi

†�1i� are
in principal allowed but cost infinite energy, whereas the
corresponding excitation �i

+�↑i� is strictly forbidden. There-
fore, the single-particle correlation functions �bk�t�bk

†� and
��k

−�t��k
+� differ only by contributions from frequencies of

the order U→�. Yet it should be mentioned that the single-
hole correlations function of hard-core bosons is not affected
by these considerations as �bk

†�t�bk� is always equivalent to
��k

+�t��k
−�. This also implies that the spectral weight of the

poles with negative energy are identical for both representa-
tions and that the particle density of the two-level system is
equal to the particle density of the hard-core bosons. In the
following, we will always speak loosely about two-level ex-
citation Green’s functions but we have to keep in mind that
there are differences in the single-particle spectral weight of
the hard-core boson and two-level excitation Green’s func-
tions at infinite energies.

B. Polariton properties of the quasiparticles

In the next step, we want to investigate the polaritonic
properties of the JCL model, which arise due to the coupling
between the photons and the two-level excitations.

Adding a particle or hole to the many-body ground state
may result in quasiparticle or collective excitations, which
are built up by the �Np�1�-particle eigenstates of the many-
body system entering the Green’s function. These many-
body eigenstates for the infinite system can be extracted
within the VCA framework from the VCA Green’s function.
As shown in Appendix A, they are linear combinations of the
particle and hole excitations of the cluster Green’s function
weighted by the eigenvector matrix X, defined in Appendix
A.

Our goal is to describe the eigenvectors of the �Np�1�
particle Hilbert space, which form the quasiparticle excita-
tions of the Green’s function by polaritonic quasiparticles
added to the exact Np particle ground-state ��0�. To this end,
we introduce the polariton creation operators p�,k

† for particle
excitations and h�,k

† for hole excitations as appropriate linear
combinations of photons and two-level excitations

p�,k
† = �p

��k�ak
† + �p

��k��k
+, �12a�

h�,k
† = �h

��k�ak + �h
��k��k

−. �12b�

It should be stressed that the hole creation operator is not
the adjoint of the particle creation operator or its annihilation
counterpart, which it would be in the case of noninteracting
particles. As we will see, the coefficients or weights of the
linear combinations �p/h

� �k� and �p/h
� �k� depend on the wave

vector k, the quasiparticle band �, and additionally on the

filling n, which is not explicitly written in Eq. �12�, since the
filling dependence is not important for the present discus-
sions. The normalized polariton quasiparticle states are de-
fined by applying the polaritonic operators on the exact Np
particle ground state ��0� yielding

��̃p,k
� � =

p�,k
† ��0�


��0�p�,kp�,k
† ��0�

�13a�

and ��̃h,k
� � =

h�,k
† ��0�


��0�h�,kh�,k
† ��0�

, �13b�

respectively. The normalization terms can be rewritten as

��0�p�,kp�,k
† ��0� = zp

�†�k�Sp�k�zp
��k� �14a�

and ��0�h�,kh�,k
† ��0� = zh

�†�k�Sh�k�zh
��k� . �14b�

In Eq. �14�, the vectors zp/h
� �k� are defined as zp/h

� �k�
���p/h

� �k� , �p/h
� �k��T and Sp/h�k� are the overlap matrices of

single-particle excitations and single-hole excitations, re-
spectively. The overlap matrix for the hole excitations is
given by

Sh�k� = � �ak
†ak� �ak

†�k
−�

�ak
†�k

−�� ��k
+�k

−�
�

where the static correlation functions are evaluated in the Np
particle ground state ��0�. All quantities entering Sh are cor-
rectly evaluated in the hard-core boson model as no excita-
tions of the “two-level bosons” into the n�1 sector occur.
For the particle case the situation is different, as we need to
evaluate

Sp�k� = ��akak
†� ��k

−ak
†��

��k
−ak

†� ��k
−�k

+�
� .

The term ��k
−�k

+� of the two-level system cannot be directly
evaluated in the hard-core boson model. Using the commu-
tator property ��i

− ,� j
+�=0 for i� j and the local anticommu-

tation relation 
�i
− ,�i

+�=1, we end up with an expression that
only contains static correlation functions which can be com-
puted correctly within the hard-core boson model

Sp�k� = ��akak
†� ��k

−ak
†��

��k
−ak

†� 1 + ��k
+�k

−� −
2

N
	k

��k
+�k

−� � .

In order to derive a formalism to construct the optimal
polariton weights, we start out with the analysis of an exact
eigenvector ���,k

Np+1� of the Hamiltonian in the
�Np+1�-particle sector. For the sake of clarity we will sup-
press in the following considerations the index k for all
quantities, and the indices � and p for quasiparticle weights
and wave functions. The optimality criterion in this case is
clearly the overlap of the exact eigenvector with the approxi-
mate �normalized� vector given in Eqs. �13� and �14�
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��̃�� =
1


z�†Spz�	
I

zI
�dI

†��0� ,

where I denote the components of the two-dimensional vec-
tors, and d1,k�ak and d2,k��k

−, see Appendix A. The maxi-

mization of ����
N+1 � �̃���2 leads to the generalized eigenvalue

problem

A�z̃� = �Spz̃�, �15�

where the elements of the 2�2 matrix A� are

AIJ
� = ��0�dI���

Np+1����
Np+1�dJ

†��0� .

In Eq. �15� we replaced z� by z̃� as the eigenvalues are just
determined except for a constant Z, which will be specified
later. As the eigenvalue corresponds to the value of the over-

lap squared �= ����
N+1 � �̃���2, the deviation of the eigenvalue

from one is a measure of the quality of the polariton approxi-
mation. It also points out that the eigenvector corresponding
to the largest eigenvalue determines the optimal polariton
coefficients. Interestingly, AIJ

� is the contribution of the exci-
tation � to the corresponding spectral function, i.e., its qua-
siparticle weight. In general, the quasiparticle peak is a su-
perposition of several exact many-body eigenstates. Hence,
the obvious generalization of the optimality criterion is to
sum over all eigenstates �, which contribute to the quasipar-
ticle excitation �. To this end we define an energy window

� in which the quasiparticle peak � is located and we in-
tegrate the spectral density in this energy window resulting
in

ÃIJ�k,
�� � 	
�,���k��
�

AIJ
� .

The polariton coefficients are again obtained by the general-
ized eigenvalue problem

Ã�k,
��z̃ = �Spz̃ .

and the eigenvalue is given by

� =
z̃†Ã�k,
��z̃

z̃†Spz̃
. �16�

The eigenvalues are still restricted to the unit interval �0,1�.
The lower limit is due to the positivity of Ã and Sp. The
upper limit follows from the property that a summation of
the integrated spectral density over all nonoverlapping en-
ergy intervals 
� is given by

	
�

particles

ÃIJ�k,
�� = �dI,kdJ,k
† � = �Sp�IJ.

Of course, z̃ and, hence, the polariton operators will depend
on the wave vector k, the quasiparticle band index � and the
filling n, i.e., the Mott lobe. The discussion so far was for the
particle case only, however, it is straightforward to iterate the
procedure for the hole case.

Eventually, we merely need the integrated spectral density
A�k ,
�� determined within the VCA framework, which is
given by

ÃIJ�k,
�� � − 	
�,���k��
�

�Q̃X�I,��X−1SQ̃†��,J.

Details are presented in Appendix A as well as the proof that
all contributions of the sum have the same sign, which is
necessary for the optimality criterion to make sense at all.
The optimality criterion as well as the eigenvalue problem
only fix the coefficient vector z up to a normalization factor
Z, i.e., z=Zz̃. The latter is determined by the condition that
the total spectral weight should be conserved

Z2z̃†Ãz̃=! tr Ã . �17�

As the excitations can now be described by wave vector,
band and filling dependent polaritonic quasiparticles, it re-
mains to evaluate the polariton spectral function Ap�k ,��,
which is due to the invariance of the trace in Eq. �17� equal
to the sum of the photon spectral function Aph�k ,�� and the
two-level excitation spectral function Aex�k ,��.

IV. RESULTS

In this section, we present the results of our calculations.
Specifically, in Sec. IV A, we discuss the quantum phase
transition from Mott phase to superfluid phase occurring in
the JCL model and investigate the impact of the variational
parameter space on the accuracy of the results. In Sec. IV B,
we study the spectral properties of both photons as well as
two-level excitations. The first two subsections refer to re-
sults obtained for zero detuning �=0, whereas nonzero de-
tuning is considered in the third subsection, Sec. IV C. Fi-
nally, in Sec. IV D, we study the polaritonic properties of the
JCL model. In particular, we introduce polariton quasiparti-
cles as wave vector and filling dependent linear combina-
tions of photons and two-level excitations and analyze the
weights of their constituents.

A. Quantum phase transition

The JCL model exhibits, comparable to the BH model,7 a
quantum phase transition from a localized Mott phase to a
delocalized superfluid phase. For integer particle density and
small hopping strength t, the ground state of the system is a
Mott state. The first two Mott lobes of the one-dimensional
�1D� JCL model for zero detuning �=0 obtained by means
of VCA with the variational parameters x= 
�c ,�� are shown
in Fig. 2. As discussed in the previous section, including � in
the set of variational parameters is nontrivial and is solely
possible since the two-level excitations can be mapped onto
hard-core bosons. The gray shaded area in Fig. 2�a� indicates
DMRG results for the phase boundary obtained by D.
Rossini et al. in Ref. 17. We find excellent agreement be-
tween the phase boundary evaluated by means of VCA with
the variational parameter set x= 
�c ,�� and the DMRG re-
sults, even at the lobe tip, where quantum fluctuation effects
are most important, and even for moderate cluster sizes L
�4. Figure 3�a� compares the phase boundaries at the tip of
the first Mott lobe for different variational parameters. The
results obtained with x= 
�c ,�� are connected by lines,
whereas the open symbols correspond to x= 
�c�. We observe
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that using both on-site energies as variational parameters im-
proves the results for the phase boundary and also yields a
better approximation for the slope of the lobe tip. A quanti-
tative measure for the quality � of the calculated phase
boundary is given by the absolute deviation from the DMRG
data per phase boundary point

� =
1

Mp
	

i

�pi
V − pi

D� , �18�

where pi
V and pi

D are corresponding phase boundary points
calculated by means of VCA and DMRG, respectively, and
Mp is the number of phase boundary points, which contribute
to the sum. In Table I, we compare the quality � /10−3 of the
phase boundary between the two sets of variational param-
eters for various cluster sizes. When using the augmented set
of variational parameters x= 
�c ,�� in contrast to x= 
�c� we
observe an improvement in the quality of the phase boundary
which ranges from 1.3 to 1.7 depending on the cluster size of
the reference system. Using both the resonance frequency �c
of the cavities and the energy spacing � of the two-level
system as variational parameters thus provides a significant
improvement with respect to the case of a single variational

parameter.19 As discussed in Refs. 27 and 30, a correct par-
ticle density in the original system can only be obtained
when the corresponding on-site energies are included in the
set of variational parameters, i.e., in the case of the JCL
model x= 
�c ,��. This is demonstrated in Fig. 3�b�, where
the total particle density n, which consists of a photon and a
two-level excitation contribution, is evaluated along the first
Mott lobe. For x= 
�c� the deviation of the particle density
from one is growing with increasing hopping strength t but
shrinking with increasing cluster size L. However, when � is
included as variational parameter the total particle density n
is as desired equal to one across the whole first Mott lobe. A
deviation of about 0.001 can be observed for t=0.2. Yet, the
hopping strength t=0.2 is probably even slightly above the
critical hopping strength t�, which indicates the tip of the
Mott lobe.17

The phase diagram of the 1D JCL model is in many as-
pects similar to the phase diagram of the 1D BH model.27,36

Particularly, the Mott lobes are point shaped and a reentrance
behavior can be observed, which means that for certain val-
ues of 	 upon increasing t the system leaves the Mott phase
and later on enters it again. Yet a very important difference is
that the width of the lobes of the JCL model at zero hopping
is shrinking with increasing particle density. This comes
from the fact that the effective on-site repulsion of the JCL
lattice model, which is hidden in the interaction between
photons and two-level excitations, is not constant, as in the
Bose-Hubbard model. The exact location of the phase
boundaries at zero hopping is derived as a by product in
Appendix B, whose major intention is, however, to introduce
the notation used for the dressed states �n ,�� and for the
corresponding energies E�n,��, where �� 
−,+� describing
the ground state and the excited state in the corresponding
constant particle number sector of the single-cavity Hilbert
space.

B. Spectral properties of photons and two-level excitations

The spectral function for photons Aph�k ,��, the spectral
function for two-level excitations Aex�k ,�� and the corre-
sponding densities of states Nph��� and Nex��� evaluated by
means of VCA for parameters belonging to the first Mott
lobe are shown in Fig. 4. We use an artificial broadening �
=0.03 and the variational parameter set x= 
�c ,�� for the
numerical evaluation of the spectral functions. Both spectral
functions Aph�k ,�� and Aex�k ,�� have the same gap as the

TABLE I. Quality � /10−3 of the phase boundary for x= 
�c� and
x= 
�c ,��, respectively. The quality � is evaluated using Eq. �18�. L
is the number of cluster sites, � ,�c are the variational parameters,
IMP is the improvement in quality when using the variational pa-
rameters x= 
�c ,�� instead of x= 
�c�.

L 
�c� 
�c ,�� IMP

2 15.95 11.34 1.41

4 8.20 4.92 1.67

6 5.34 3.16 1.69

8 3.95 3.07 1.29
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FIG. 2. �Color online� Phase boundaries of the JCL model in
one dimension for zero detuning �=0. �a� VCA results for the
variational parameters x= 
�c ,�� and various cluster sizes of the
reference system. The gray shaded area indicates DMRG data �Ref.
17�. �b� Phase boundaries obtained for the largest cluster �L=8 for
the first Mott lobe and L=6 for the second Mott lobe�. The marks
refer to parameters where spectral functions are evaluated.
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photons and the two-level excitations are coupled. The spec-
tral functions of the JCL model generally consist of four
bands. This can best be understood in terms of the analytic
solution of the JCL model for zero hopping strength t=0.
The ground state ��0� of the JCL model in the Mott phase
with particle density n for zero hopping is given by the ten-
sor product state

��0� = �
��1

N

�n,� ��, �19�

where �n ,−�� is the dressed n particle ground state of lattice
site �. The states with a single-particle excitation are those,
where N−1 sites remain in the dressed state �n ,−� and one
site is excited to the state �n+1,��. Similarly, for the single-
hole excitation N−1 sites remain in the state �n ,−� and one
site is excited to the state �n−1,��. In both cases, the excited

states are N fold degenerate as the particle/hole excitation
can be located on any of the N lattice sites. The degenerate
states have thus the structure

��p
�,l� � �n + 1,��l �

��1

��l

N

�n,� �� �20a�

and ��h
�,l� � �n − 1,��l �

��1

��l

N

�n,� ��, �20b�

respectively. Two of the four bands, we refer to them as
lower modes �p/h

− , emerge from the excitation of site i from
the dressed state �n ,−�i to the states �n�1,−�i, which are
ground states of the corresponding Hilbert-space sector with
constant particle number. Analogously, we refer to the bands
which emerge from the excitation of site i from �n ,−�i to the
excited states in the corresponding particle sector �n�1,+�i
as upper modes �p/h

+ . The presence of the upper modes has
been first noted by S. Schmidt et al. in Ref. 16 and has been
numerically observed in latest QMC calculations21 as well.
The two upper modes �p/h

+ indicate a clear deviation from the
BH physics, which emerges due to the composition of two
distinct particles. As discussed in the previous section, the
two particle bands �p

�, �� 
−,+�, determine the polariton
particle creation operators p�,k

† whereas the two hole bands
�h

� specify the hole creation operators h�,k
† .

In the spectral functions of Fig. 4, the lower modes �p/h
−

correspond to the cosine-like shaped bands centered around
�−	=0. The intensities of the lower modes �p/h

− are con-
trary for the photon spectral function Aph�k ,�� and the two-
level excitation spectral function Aex�k ,��. For Aph�k ,�� the
particle band �p

− is more intense than the hole band �h
−

whereas the hole band is more intense than the particle band
for Aex�k ,��. For the first Mott lobe the upper hole mode �h

+

does not exist as this would require to excite a single-site i
from the dressed state �1,−�i to the nonexisting state �0,+�i.
Thus, only the upper particle mode �p

+ can be observed in the
spectral functions shown in Fig. 4, which corresponds to the
essentially flat band located at �−	�3. In Appendix C, we
evaluate the single-particle and single-hole excitation bands
by means of first-order degenerate perturbation theory, which
yields

�p,1
� = ��c − 	� + �q�n + 1� + q�n� − 2t̃p

� cos k �21a�

and �h,1
� = ��c − 	� − �q�n − 1� − q�n� + 2t̃h

� cos k ,

�21b�

respectively, where t̃p/h
� is the renormalized hopping strength.

Figure 4�a� shows, additionally to the spectral functions ob-
tained by means of VCA, the perturbation results for the
bands. For small hopping strength we observe, as expected,
good agreement between the two approaches. From the ana-
lytic solution of the bands we are able to extract their width,
which is given by 2t̃p/h

� . The renormalization factor in t̃p/h
�

essentially consists of a square of the form �a+b�2, see Eqs.
�C5� and �C7�. Evaluating these expressions shows that
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FIG. 4. �Color online� Photon spectral function Aph�k ,��, first
row, and density of states Nph���, second row. Two-level excitation
spectral function Aex�k ,��, third row, and density of states Nex���,
fourth row. The spectral functions are evaluated for the parameters
�a� t=0.03, 	−�c=−0.75, �=0 and �b� t=0.12, 	−�c=−0.84, �
=0, which belong to the first Mott lobe. The dashed lines in the
spectral functions in �a� correspond to first-order degenerate pertur-
bation theory results, see Appendix C. The Roman numerals in the
captions of the subfigures refer to the marks in Fig. 2�b�.
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a ,b�0 for the lower modes �p/h
− but a�0 and b�0 for the

upper modes �p/h
+ . Therefore, a and b almost cancel each

other in the latter case, which yields a small renormalized
hopping strength of the upper modes t̃p/h

+ in comparison to
the one of the lower modes t̃p/h

− and thus, essentially flat
upper particle/hole bands �p/h

+ .16 Plugging in the value of the
modified chemical potential 	−�c=−0.75, which has been
used to evaluate the spectral function shown in Fig. 4�a�, into
Eq. �21a� yields �p,1

+ �3.16, where we neglected the depen-
dence on the wave vector. This matches perfectly with the
VCA results. In addition to previous work16,21 we evaluate
the upper modes not only for photons but also for two level-
excitations. Interestingly, the spectral weight differs signifi-
cantly for the two types of particles. In particular, the upper
particle mode �p

+ has a very large intensity in the two-level
excitation spectral function Aex�k ,��, but is almost not vis-
ible in the photon spectral function Aph�k ,��. For the spec-
tral function shown in Fig. 4�b� a different chemical potential
	−�c=−0.84 has been used. Thus, the upper particle mode
is shifted slightly upwards in comparison to Fig. 4�a� and is
located at �p,1

+ �3.25. Figure 5 shows the lower particle band
�p

− of the photon spectral function Aph�k ,�� for the same
parameters as in Fig. 4. In this figure, we compare the VCA
results for different hopping strengths with the results ob-
tained by means of first-order degenerate perturbation theory.
For small hopping strength, t=0.03, see Fig. 5�a�, the pertur-
bative results agree very well with the VCA results in both
the width as well as the shape of the band. However, for
large hopping strength t=0.12, which is already close to the
tip of the Mott lobe, the lower particle band does not exhibit
a simple cosine shape anymore, see Fig. 5�b�. In addition the
width of the band is slightly overestimated by first-order de-
generate perturbation theory.

In the spectral functions shown in Fig. 4�b� there is addi-
tional spectral weight located at �−	�2. We can exclude
that this additional weight stems from the periodization pre-
scription used in VCA or from any other VCA internal pro-
cesses as it also appears in the cluster Green’s function,
which is solved by exact diagonalization. This can be veri-
fied best by comparing the density of states obtained from
the VCA Green’s function with the density of states obtained
from the cluster Green’s function, see Fig. 6. Both densities
of states, the one obtained from the cluster Green’s function

and the one obtained from the VCA Green’s function, exhibit
a peak located at �−	�2. The additional peak can be re-
vealed in the framework of perturbation theory. First-order
local particle fluctuations in the ground state will have con-
tributions of the form

����1�� =
t

�E
�n + 1,��l � �n − 1,��l� �

��1

��l,l�

N

�n,� ��,

where l , l� correspond to nearest-neighbor sites. Due to the
energy denominator �E the predominant terms are those
with �=�=−. The correction term ����1�� is proportional to
the hopping strength t, which explains, why the additional
peak is not present in Fig. 4�a�. The particle excitation
couples to final states with an additional particle either on
site l, l� or on one of the remaining sites. A detailed analysis
shows that the excitation, responsible for the additional peak
at about �−	�2, is

��Np+1� = �n + 1,− �l � �n,+ �l� �
��1

��l,l�

N

�n,� ��.

The corresponding excitation energy is given by

�̃p = E�n+1,−� + E�n,+� + �N − 2�E�n,−� − E0
N

= E�n+1,−� + E�n,+� − 2E�n,−�

= �c − 	 − q�n + 1� + 3q�n� .

For zero detuning and 	−�c=−0.84 the energy is �̃p=�
−	=2.4.

As discussed before, the upper hole mode �h
+ does not

exist in the first Mott lobe. Yet, the mode �h
+ is present in

spectral functions of the second Mott lobe, see Fig. 7. Ac-
cording to Eq. �21� the upper modes are located at �p,1

+

�3.52 and �h,1
+ �−2.04 for the parameters used in Fig. 7�a�.

This matches very well the results obtained by means of
VCA. The chemical potential of the spectral function shown
in Fig. 7�b� differs from the one of �a� merely about 0.01.
Thus, the bands �p/h

+ are located at rather the same position
in both spectral functions.
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The momentum distribution for photons nph�k� and two-
level excitations nex�k� in the first and second Mott lobe are
shown in Fig. 8. For increasing hopping strength t the mo-
mentum distribution becomes more peaked for both the pho-
tons and the two-level excitations. In the first Mott lobe the
momentum distributions nph�k� and nex�k� are centered
around 0.5, which means that the cavities are on average
equally occupied by photons and two-level excitations. In the
second Mott lobe nph�k� is centered around 1.5. However,
nex�k� is still centered around 0.5, as the maximum local
occupation number of the two-level systems is restricted to
one.

In order to display the slowing down of correlations upon
approaching the boundary of the Mott phase, we evaluate the
spatial correlation function Cx��ri−r j�� in the first Mott lobe
�Fig. 9�. The spatial correlation function can be obtained
from the Fourier transform of the momentum distribution.
For small distances �ri−r j� between sites i and j the correla-

tion function is a superposition of multiple exponential func-
tions with distinct strengths of decay. For large distances,
however, the exponential function with the smallest decay
dominates and thus the correlation function is of the form

Cx��ri − r j�� � e−�x�ri−rj�, �22�

as expected in the insulating phase. Using VCA we are able
to extract the correlation length �x=1 /�x, as data are avail-
able for large distances between two sites i and j. From a
linear fit for sufficiently large distances we obtain �I

ph=�I
ex

=1.711�0.001 for the parameters I, see marks in Fig. 2�b�,
and �II

ph=�II
ex=0.317�0.001 for the parameters II. Therefore,

the slope of the correlation function is the same for the two
particle species, which is due to the coupling between the
photons and the two-level excitations. As in the BH model37

the absolute slope �x of the correlation function shrinks with
increasing hopping strength, which is a precursor of the su-
perfluid phase, where the correlation between sites persists
up to long distances.

C. Nonzero detuning

The detuning �, which is the difference between the reso-
nance frequency �c of the cavities and the energy spacing �
of the two-level systems, is a very important parameter of the
JCL model. By varying the detuning it is possible to change
the width of the Mott lobes. Phase boundaries obtained by
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row, and density of states Nph���, second row. Two-level excitation
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means of VCA with the set of variational parameters x
= 
�c ,�� for �=−1 and �=1 are shown in Fig. 10. For the
parameters marked with � we evaluate the spectral function
of photons Aph�k ,�� and two-level excitations Aex�k ,��, see
Fig. 11. An interesting effect can be observed in the spectral

functions Aex�k ,��. Namely, the intensity of the upper band
�p

+ depends significantly on the detuning �. For negative
detuning �=−1, the upper mode in Aex�k ,�� is very intense,
see Fig. 11�a�, whereas it is almost not visible for positive
detuning �=1. This behavior remains valid when the spec-
tral functions for positive and negative detuning are evalu-
ated for identical hopping strength. The zero-hopping result
for the energy of the upper mode is �p,1

+ �3.15 for the spec-
tral function shown in Fig. 11�a� and �p,1

+ �3.82 for the spec-
tral function shown in Fig. 11�b�. The momentum distribu-
tions of photons nph�k� and two-level excitations nex�k� for
the parameters marked in Fig. 10 are shown in Fig. 12. For
negative detuning it is energetically more expensive to excite
the two-level system than to add a photon to the cavity. Thus,
the momentum distribution of photons nph�k� dominates over
the momentum distribution of two-level excitations nex�k�.
For positive detuning the situation is reversed and nex�k� is
larger than nph�k� for all values of the momentum.

D. Polariton quasiparticles

Up to now we investigated the photon properties and the
two-level excitation properties of the JCL model separately,
by extracting the Green’s function of photons Gph�k ,��
=Gakak

†��� and the Green’s function of two-level excitations
Gex�k ,��=G�k

−�k
+��� from the compound Green’s function

G�k ,��, which is a 2�2 matrix of the form

G�k,�� = �Gakak
†��� Gak�k

+���

G�k
−ak

†��� G�k
−�k

+��� � . �23�

Next we will discuss the polaritonic properties of the JCL
model. We start out with the first Mott lobe for zero detuning
and focus again on the parameter set marked as II in Fig. 2,
i.e., t=0.12, 	−�c=−0.84, and �=0. The polaritonic spec-
tral function Ap�k ,�� and the corresponding density of states
Np���, which is by construction identical to the total density
of states of photons plus two-level excitations, is shown in
Fig. 13. For the first Mott lobe the hole case is special since
both, �−�n ,−�� �0,−� and a�n ,−�� �0,−� yield the exact zero-
particle state. Consequently, the polariton can be chosen ad
libitum, it will always be exact. Therefore in Fig. 14 only the
particle part of the polaritonic weights is depicted. The right
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FIG. 11. �Color online� Photon spectral function Aph�k ,��, first
row, and density of states Nph���, second row. Two-level excitation
spectral function Aex�k ,��, third row, and density of states Nex���,
fourth row. The spectral functions are evaluated for the parameters
�a� t=0.036, 	−�c=−0.54, �=−1 and �b� t=0.2, 	−�c=−1.2, �
=1. The Roman numerals in the captions of the subfigures refer to
the marks in Fig. 10.
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panel represents the result for the lower particle excitation.
The polariton has very pronounced photonic character and
the weights of photons and two-level system have opposite
sign. Interestingly, the lower particle excitation can very well
be mimicked by a single polariton on top of the Np-particle
ground state, as can be inferred from the fact that ��1.
Moreover, a slight k-dependence of the weights is observed.
Contrarily in the upper particle band, the polariton has pro-
nounced two-level-system character, the weights have the
same sign, there is almost no k-dependence, and the polar-
iton description is poor ���0.2�.

Now we turn to the second Mott lobe, which allows us to
study the hole polariton as well. The polariton spectral func-
tion and the corresponding density of states evaluated for the
parameters IV, i.e., t=0.012, 	−�c=−0.38, and �=0, are
shown in Fig. 15. The weights are shown along with the
overlap � in Fig. 16. The lower bands �p/h

− are well described
by the quasiparticles as the overlap � is almost one for both
bands. The upper bands �p/h

+ , however, are not described that
well. In particular ��0.2 for the upper particle band and �
�0.85 for the upper hole band. The weights � and � are
significantly more wave vector dependent, especially for the
upper bands �p/h

+ , i.e., �=+. Apart from the more pro-
nounced k-dependence, the weights for the particle case are
rather similar to those of the first Mott lobe. However, there
are striking differences in the weights for the particle and
hole part within the second Mott lobe. First, the k depen-

dence is more pronounced. Second, the sign of the relative
weights is positive for both bands �=�, and finally, the
composition of the polariton in the two bands is reverse. The
lower band has predominantly photonic character, while
opposite holds for the upper band.

Eventually, we want to compare the VCA results with
those of the single-site problem, which are derived in Appen-
dix D. In the single-site problem the sign of the relative
polaritonic weights is the same as that observed in the lattice.
In the first Mott lobe the relative weights for the particle case
are for the upper band q+��p,n=1

+ /�p,n=1
+ =
2+1 and for the

lower band the reciprocal relation holds q−��p,n=1
− /�p,n=1

−

=−q+. There is agreement in the relative signs and the com-
position of the polariton between the single-site limit and the
lattice system, but the reciprocal property is strongly violated
in the lattice case. This might be understood as follows. The
itinerant particles are the photons. In order to gain kinetic
energy it is convenient for the system to increase the photo-
nic character in the dispersive lower band, depicted in Fig.
15�a�. The upper band, on the other hand, has little disper-
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sion and behaves more like the single-site limit.
In the second Mott lobe, the relative weights obtained in

the single-site limit for particle excitations are q+=
3+
2
and q−=−q+. Like in the lattice case, the weights of the par-
ticle part are comparable in the first and second Mott lobe.
Quantitatively, the relative weight �q�� is roughly 30% larger
in the second Mott lobe, which is also the case in the lattice
system. As far as the hole part is concerned, the single-site
limit nicely corroborates all observations of the lattice
model.

In the single-site problem, the exact many-body eigen-
states �n�1,�� can be generated exactly by suitable polar-
iton operators acting on the state �n ,−�. This is no longer the
case in the lattice due to local particle number fluctuations
induced by particle motion. Already in the single-site limit,
the polariton operators are, however, not universal, they de-
pend on the filling n and in the lattice case even on the wave
vector k. On top of that, the polariton operator for holes is
not the adjoint of the corresponding polariton creation opera-
tor of the particle type, or in other word its annihilation
operator.

V. CONCLUSIONS

In this paper, we presented and discussed the spectral
properties of the Jaynes-Cummings lattice model in one di-
mension obtained within the variational cluster approach.
Using the resonance frequency �c of the cavities and the
energy spacing � of the two-level systems as variational pa-
rameters in the variational cluster approach procedure pro-
vides a significant improvement with respect to the case of a
single variational parameter. On the one hand, varying both
�c as well as � �or, at least 	� is necessary to achieve a
correct particle density in the original system and on the
other hand improved results for the phase boundaries, and
thus, for the spectral functions as well, are obtained due to
the augmented set of variational parameters. In order to ap-
ply the variational cluster approach and include � as varia-
tional parameter the two-level systems have been mapped
onto hard-core bosons, which yields correct poles of the
Green’s function in the relevant energy range. We evaluated
and discussed spectral functions for photons and two-level
excitations. The spectral functions generally consist of four
bands, cosinelike shaped lower particle/hole bands, which
are centered around zero energy, and essentially flat upper
particle/hole bands. An exception are the spectral functions
in the first Mott lobe, which contain the two lower bands but
from the upper bands only the particle part. Using first-order
degenerate perturbation theory, we evaluated analytical ex-
pressions for the bands, which allowed us to explain why the
upper modes are essentially flat whereas the lower modes
exhibit a pronounced cosinelike shape. Additionally, we
compared the analytical solution for the bands with the varia-
tional cluster approach results. For small hopping strength t
we observe, as expected, good agreement between the two
approaches. However for parameters located close to the tip
of the Mott lobe, first-order degenerate perturbation theory
yields results that differ from the exact ones in both, shape
and width of the bands. Furthermore, we evaluated densities

of states, momentum distributions and spatial correlation
functions for photons and two-level excitations. We also in-
vestigated detuning effects on the spectral properties and
found indications that the intensity of the upper particle band
of the two-level excitation spectral function depends strongly
on the detuning. Based on the information obtained from the
photons and two-level excitations we investigated the polari-
tonic properties of the Jaynes-Cummings lattice model.
Therefore we introduced wave vector and filling dependent
polariton particle creation and hole creation operators, which
are linear combinations of photon and two-level excitation
creation operators. We evaluated spectral functions and den-
sities of states based on the polariton quasiparticles and ana-
lyzed the weights of their constituents. We have seen that the
polariton operators are nontrivial combinations of photon
and two-level system operators, which depend on the wave
vector, the quasiparticle band, and the filling, or rather the
Mott lobe. On top of that, the polariton operators of particle
and hole type are not adjoint operators. It is therefore not
possible to describe the JCL model by a simple single-band
polariton model.
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APPENDIX A: PROPERTIES OF THE VCA
GREEN’S FUNCTION

Here, we will derive some properties of the VCA Green’s
function for bosons. To begin with, we define new operators
d

J,r,k̃

†
with d

1,r,k̃

† �a
r,k̃

†
and d

2,r,k̃

† ��
r,k̃

+
, where r stands for the

site number within the clusters and k̃ is the wave vector of
the first Brillouin zone of the superlattice. The VCA Green’s
function will still be diagonal in the latter index due to the
periodicity of the clusters. The spectral representation of the
cluster Green’s function

GIJ� �k̃,�� � ��dI,r,k̃;d
J,s,k̃

† ���

can be written in the compact form using the so-called Q
matrices32,34

G� = QD��SQ†.

Here, Q is a M �K matrix, where M is twice the number of
cluster sites �the factor 2 stems from the two species of op-
erators� and K=Kp+Kh, where Kp and Kh is the dimension of
the Hilbert space for Np+1 and Np−1 particles, respectively.
The Q matrix is defined as follows
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QI,r;� = ���0�dI,r,k���
Np+1� for � 
 Kp

��0�dI,r,k
† ���−Kp

Np−1� for � � Kp
� .

The diagonal matrix D�� =diag��−����
−1 contains the indi-

vidual poles ��� of the cluster and S=diag�s�� is a diagonal
sign matrix with s�=+1 for particle excitations �����0� and
s�=−1 for hole excitations �����0�. The VCA Green’s func-
tion in Q-matrix representation for bosons34 reads

G�k̃,�� = QXD�X−1SQ†, �A1�

where D�=diag��−���−1 is the diagonal matrix of the indi-
vidual poles at the VCA energies. These energies and the
corresponding eigenvector matrix X are determined via the
generalized eigenvalue problem

�diag�s����� + Q†VQ�

�M

X = SX ,∆

where V=H0−H0� is the difference of the matrices of the
single-particle part of the Hamiltonian for the original and
the reference system �i.e., the cluster�.

A general feature of such eigenvalue equations for Her-
mitian matrices M is that both X†MX and X†SX
�diag���

−1� are diagonalized, but X is not unitary. We can
exploit this fact as follows

G�k̃,�� = QXD�X−1S�X−1�†

�D�

X†Q†.

The matrix D�= �X†SX�−1 is diagonal as we just discussed
and can be combined with D� resulting in

G�k̃,�� = QXD̃��QX�†

�D̃����� =  �,��
��

� − ��

.

Moreover, the pole strengths �� are real since

��
−1 = �X†SX��� = 	

	

s	�X�	�2.

When the VCA parameters are determined consistently, the
stability of the Np-particle system requires that the sign of ��

coincides with the sign of the excitation energies ��, like in
the exact spectral representation.

So far the Green’s function still depends on the intra clus-
ter indices r ,s. The purely k-dependent Green’s function is
commonly obtained by Green’s function-periodization.35,38

Invoking the periodization prescription yields the Green’s
function matrix merely in the indices I ,J for the two particle
species

G�k,�� = Q̃XD̃�X†Q̃† �A2�

with Q̃I,� =
1

N
	

r

e−ikxrQI,r;�, �A3�

see also Eq. �23�. Equation �A2� corresponds to the spectral
representation of the exact Green’s function and it allows to

extract the VCA approximation of the many-body eigenstates
of the infinite system, which are obviously a linear combina-
tion of the cluster eigenstates for both, particle and hole
excitations.

As described in the text we need the integrated spectral
density, i.e.,

AIJ�k,
�� = �

�

�−
1

�
Im GIJ�k,� + i���d�

= 	
�,���k��
�

�Q̃X�I,����Q̃X�J,�.

We readily recognize, that the integrated spectral density is
either positive or negative definite, depending on whether the
quasiparticle under consideration is of particle or hole type.
Equivalently, in the original representation

AIJ�k,
�� = 	
�,���k��
�

�Q̃X�I,��X−1SQ̃†��,J.

For the polariton discussion it is convenient to suppress the
minus sign arising in the hole case and we define the strictly
positive integrated spectral densities as

ÃIJ�k,
�� � �AIJ�k,
��� . �A4�

APPENDIX B: SOLUTION OF THE SINGLE-SITE
PROBLEM

For zero-hopping strength t=0 the JCL model can be
solved exactly, as it reduces to a single-site problem, i.e., to
the JC model. Including the chemical potential yields the
single-site Hamiltonian

ĤS
JCL = ĤJC − 	�a†a + �+�−� , �B1�

where we dropped the site index i. It can be evaluated with
respect to the bare states �np ,s�, where np is the number of
photons and s� 
↓ ,↑�. Next, we sketch the most important
steps for solving the single-site JCL model. A detailed dis-
cussion can be found for example in Ref. 25 and 39. As the
JC Hamiltonian conserves the particle number the Hamil-

tonian ĤS
JCL is block diagonal. Each block corresponds to a

certain particle number n and thus we use the bare states
�n−1,↑� and �n ,↓� to evaluate the block, which yields

Bn = ��n − 1��c + � − 	n 
n


n n�c − 	n
� , �B2�

when using as denoted in Sec. II, the coupling g as unit of
energy. The eigenvalues of the block Bn are

E�n,�� = n�c −
�

2
+ �q�n� − 	n , �B3�

where �� 
−,+� and q�n�=
�� /2�2+n. For a certain particle
number n the energy E�n,−� is always smaller than E�n,+�, and
thus, E�n,−� is the ground-state energy of the sector with n
particles, i.e., of the block Bn. The eigenvectors �n ,�� of the
matrix Bn are termed dressed states and are given by
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�n,�� = un��n − 1,↑� + vn��n,↓� , �B4�

where n�0, �un+ ,vn+���sin !�n� , cos !�n�� and �un− ,vn−�
��cos !�n� ,−sin !�n�� with the following relations sin !�n�
=
�q�n�−� /2� /2q�n� and cos !�n�=
�q�n�+� /2� /2q�n�.
An exception is the bare state �0,↓�, which forms a 1�1
block of zero particles and has the eigenvalue E�0,↓�=0, inde-
pendently of the detuning �. According to the notation used
in Eq. �B4�, we denote this state as �0,−�. In order to obtain
the phase boundary for zero hopping between two adjacent
Mott lobes, the energies E�n,−� and E�n+1,−� have to be set
equal. The energies of the states �m ,−� are used, as the phase
diagram is evaluated for the ground state. The comparison of
the energies yields �	−�c�=q�n�−q�n+1� for the location of
the phase boundary at zero hopping.

APPENDIX C: FIRST-ORDER DEGENERATE
PERTURBATION THEORY

In this appendix, we evaluate the results of first-order de-
generate perturbation theory for the single-particle and
single-hole excitation bands of the JCL model. To apply first-
order degenerate perturbation theory the matrix elements of

the perturbation Ĥ1=	ijtijai
†aj, where tij is the hopping ma-

trix, have to be evaluated with respect to the degenerate

states ��p
�,l� and ��h

�,l�, see Eq. �20�. As the hopping term Ĥ1
does not change the total particle number and does not effect
the excitation �, the following two matrices have to be
evaluated; one for single-particle excitations

�Mp
��ll� � ��p

�,l�Ĥ1��p
�,l�� , �C1�

and one for single-hole excitations

�Mh
��ll� � ��h

�,l�Ĥ1��h
�,l�� . �C2�

Plugging Eq. �20a� in Eq. �C1� yields

�Mp
��ll� = �

��1

��l

N

�n,� ���n � 1,��l∑
i,j

tijai
†aj�n � 1,��l� �

���1

��l�

N

�n,� ���.

�C3�

Due to the orthogonality of the eigenvectors of sectors with
different particle number, the conditions i= l and j= l� hold,
which reduce the matrix elements to

�Mp
��ll� = tll��n,− �l��n + 1,��lal

†al��n + 1,��l��n,− �l

= tll���n + 1,��a†�n,− ��2. �C4�

In the second step, we dropped the site index as the expec-
tation value does not depend on the specific lattice site. The
corrected matrix elements are, thus, the old ones with renor-
malized hopping strength

− t̃p
� � − t��n + 1,��a†�n,− ��2

= − t�
nun+1�un− + 
n + 1vn+1�vn−�2. �C5�

Analogously, one obtains

�Mh
��ll� = tl�l��n − 1,��a�n,− ��2, �C6�

for the matrix elements defined in Eq. �C2�. From that the
renormalized hopping strength for single-hole excitations is
evaluated as

− t̃h
� = − t�
n − 1un−1�un− + 
nvn−1�vn−�2. �C7�

The eigenvalues of the matrices Mp/h
� are the first-order cor-

rections and thus the corrected energies E�n�1,���k� of the
one-dimensional JCL model are given by

E�n+1,���k� = E�n+1,�� − 2t̃p
� cos k and �C8a�

E�n−1,���k� = E�n−1,�� − 2t̃h
� cos k , �C8b�

respectively, where k is a wave vector of the first Brillouin
zone. Within first-order degenerate perturbation theory we
obtain

�p,1
� = E�n+1,���k� − E�n,−�

= ��c − 	� + �q�n + 1� + q�n� − 2t̃p
� cos k �C9�

for the single-particle excitation band and

�h,1
� = E�n,−� − E�n−1,���k�

= ��c − 	� − �q�n − 1� − q�n� + 2t̃h
� cos k . �C10�

for the singe-hole excitation band.

APPENDIX D: POLARITON OPERATORS IN THE
SINGLE-SITE LIMIT

In this appendix, we want to analyze the polaritonic fea-
ture in the single-site limit for zero detuning.

In the single-site limit it is exactly possible to construct a
polariton operator which, applied to the many-body eigen-
state �n ,−�, generates the eigenstates �n�1,��. The polari-
tonic weights follow from

��a† + ��+��n,− � =
�
n − �


2
�n,↑� − �
n + 1

2
�n + 1,↓�

=! �n + 1,�� ,

�p,n
�

�p,n
� =

1

�
n + 1 + 
n
. �D1�

Here, we explicitly include the filling n as index. So the
relative weights are �
n+1+
n�−1 for the upper band
��=+� and −�
n+1+
n� for the lower band ��=−�. This
means that in the lower band the weights have opposite sign
and the polaritons are of predominant photonic character,
while the opposite applies to the upper band. The modulus of
relative weight is just the inverse, i.e., ��+ /�+�= ��− /�−�.

Next, we study the hole case for n�1

��a + ��−��n,− � = �
n − 1

2
�n − 2,↑� +

� − �
n

2

�n − 1,↓�

=! �n − 1,�� ,
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�h,n
�

�h,n
� =

1

n + �
n − 1

, �D2�

which is positive for both bands �=�. Again, we have the
reciprocal property �+ /�+=�− /�− and the lower band has
predominantly photonic character, while the opposite is the
case in the upper band.

Now we want to scrutinize the generalized eigenvalue
problem of the Green’s function. The single-site Green’s
function reads

GIJ
S ��� = 	

�=�

pQI,�
pQ�,J

†

� − �p,�
− 	

�=�

hQI,�
hQ�,J

†

� − �h,�

pQI,� = �n + 1,��dI
†�n,− ��

hQI,� = �n − 1,��dI�n,− � ,

where we introduced the operators d1�a and d2��−. For
the single-particle term we obtain

pQ1,� = �n + 1,��a†�n,− ��

=
1

2
�
n − �
n + 1�

pQ2,� = �n + 1,���+�n,− ��

= −
1

2
.

With the definition x�= �pQ1,� , pQ2,��T the integrated spectral
density for the particle part can be expressed as

Ã� = x�x�
T .

The overlap matrix Sp��dIdJ
†� is readily obtained by the

spectral theorem

Sp = x+x+
T + x−x−

T ,

and the generalized eigenvalue problem for the polariton
weights according to Eq. �15� reads

�1 − ��x�x�
Tz̃� = �x−�x−�

T z̃�.

The eigenvalues are zero and one. For the polariton weights
we are interested in the latter. The corresponding eigenvector
is simply given by the vector orthogonal to x−�

z̃� =
1

2
� 1


n + �
n + 1
� .

With that one obtains for the ratio of the weights

�p,n
�

�p,n
� =

1

n + �
n + 1

,

which is in agreement with the exact result in Eq. �D1�.
Now we address the hole case, again for n�1,

hQ1,� = �n − 1,��a�n,− � =
1

2
�
n − 1 − �
n�

hQ2,� = �n + 1,���−�n,− � = �
1

2
.

We proceed as in the particle case with the definition of x�
T

= �hQ1,� , hQ2,��. The remaining steps are the same as before
and we end up with

�h,n
�

�h,n
�

=
�


n − 1 + �
n
=

1


n + �
n − 1
,

which is also in agreement with the exact result, see Eq.
�D2�. So we see that the determination of the polaritonic
weight via the generalized eigenvalue problem is reasonable.
In the single-site limit, the exact many-body eigenstates
�n�1,�� can be generated correctly by suitable polariton
operators acting on the state �n ,−�. The operators are, how-
ever, not universal, they depend on n and in the lattice case
even on k. On top of that, the polariton creation operator for
holes is not the adjoint of the corresponding polariton cre-
ation operator of the particle type, or in other words its
annihilation operator.
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